scrypt算法,不多解释。
可直接在windows、linux、android(ndk)上编译。
crypto_scrypt.h
/*- * Copyright 2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #ifndef _CRYPTO_SCRYPT_H_ #define _CRYPTO_SCRYPT_H_ #include <stdint.h> /** * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int crypto_scrypt(const uint8_t *, size_t, const uint8_t *, size_t, uint64_t, uint32_t, uint32_t, uint8_t *, size_t); #endif /* !_CRYPTO_SCRYPT_H_ */
crypto_scrypt-nosse.cpp
/*- * Copyright 2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #include "scrypt_platform.h" #include <sys/types.h> //#include <sys/mman.h> #include <errno.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #include "sha256.h" #include "sysendian.h" #include "crypto_scrypt.h" #define SIZE_MAX (4294967295U) static void blkcpy(void *, void *, size_t); static void blkxor(void *, void *, size_t); static void salsa20_8(uint32_t[16]); static void blockmix_salsa8(uint32_t *, uint32_t *, uint32_t *, size_t); static uint64_t integerify(void *, size_t); static void smix(uint8_t *, size_t, uint64_t, uint32_t *, uint32_t *); static void blkcpy(void * dest, void * src, size_t len) { size_t * D = (size_t *)dest; size_t * S = (size_t *)src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] = S[i]; } static void blkxor(void * dest, void * src, size_t len) { size_t * D = (size_t *)dest; size_t * S = (size_t *)src; size_t L = len / sizeof(size_t); size_t i; for (i = 0; i < L; i++) D[i] ^= S[i]; } /** * salsa20_8(B): * Apply the salsa20/8 core to the provided block. */ static void salsa20_8(uint32_t B[16]) { uint32_t x[16]; size_t i; blkcpy(x, B, 64); for (i = 0; i < 8; i += 2) { #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) /* Operate on columns. */ x[ 4] ^= R(x[ 0]+x[12], 7); x[ 8] ^= R(x[ 4]+x[ 0], 9); x[12] ^= R(x[ 8]+x[ 4],13); x[ 0] ^= R(x[12]+x[ 8],18); x[ 9] ^= R(x[ 5]+x[ 1], 7); x[13] ^= R(x[ 9]+x[ 5], 9); x[ 1] ^= R(x[13]+x[ 9],13); x[ 5] ^= R(x[ 1]+x[13],18); x[14] ^= R(x[10]+x[ 6], 7); x[ 2] ^= R(x[14]+x[10], 9); x[ 6] ^= R(x[ 2]+x[14],13); x[10] ^= R(x[ 6]+x[ 2],18); x[ 3] ^= R(x[15]+x[11], 7); x[ 7] ^= R(x[ 3]+x[15], 9); x[11] ^= R(x[ 7]+x[ 3],13); x[15] ^= R(x[11]+x[ 7],18); /* Operate on rows. */ x[ 1] ^= R(x[ 0]+x[ 3], 7); x[ 2] ^= R(x[ 1]+x[ 0], 9); x[ 3] ^= R(x[ 2]+x[ 1],13); x[ 0] ^= R(x[ 3]+x[ 2],18); x[ 6] ^= R(x[ 5]+x[ 4], 7); x[ 7] ^= R(x[ 6]+x[ 5], 9); x[ 4] ^= R(x[ 7]+x[ 6],13); x[ 5] ^= R(x[ 4]+x[ 7],18); x[11] ^= R(x[10]+x[ 9], 7); x[ 8] ^= R(x[11]+x[10], 9); x[ 9] ^= R(x[ 8]+x[11],13); x[10] ^= R(x[ 9]+x[ 8],18); x[12] ^= R(x[15]+x[14], 7); x[13] ^= R(x[12]+x[15], 9); x[14] ^= R(x[13]+x[12],13); x[15] ^= R(x[14]+x[13],18); #undef R } for (i = 0; i < 16; i++) B[i] += x[i]; } /** * blockmix_salsa8(Bin, Bout, X, r): * Compute Bout = BlockMix_{salsa20/8, r}(Bin). The input Bin must be 128r * bytes in length; the output Bout must also be the same size. The * temporary space X must be 64 bytes. */ static void blockmix_salsa8(uint32_t * Bin, uint32_t * Bout, uint32_t * X, size_t r) { size_t i; /* 1: X <-- B_{2r - 1} */ blkcpy(X, &Bin[(2 * r - 1) * 16], 64); /* 2: for i = 0 to 2r - 1 do */ for (i = 0; i < 2 * r; i += 2) { /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 16], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[i * 8], X, 64); /* 3: X <-- H(X \xor B_i) */ blkxor(X, &Bin[i * 16 + 16], 64); salsa20_8(X); /* 4: Y_i <-- X */ /* 6: B' <-- (Y_0, Y_2 ... Y_{2r-2}, Y_1, Y_3 ... Y_{2r-1}) */ blkcpy(&Bout[i * 8 + r * 16], X, 64); } } /** * integerify(B, r): * Return the result of parsing B_{2r-1} as a little-endian integer. */ static uint64_t integerify(void * B, size_t r) { uint32_t * X = (uint32_t *)((uintptr_t)(B) + (2 * r - 1) * 64); return (((uint64_t)(X[1]) << 32) + X[0]); } /** * smix(B, r, N, V, XY): * Compute B = SMix_r(B, N). The input B must be 128r bytes in length; * the temporary storage V must be 128rN bytes in length; the temporary * storage XY must be 256r + 64 bytes in length. The value N must be a * power of 2 greater than 1. The arrays B, V, and XY must be aligned to a * multiple of 64 bytes. */ static void smix(uint8_t * B, size_t r, uint64_t N, uint32_t * V, uint32_t * XY) { uint32_t * X = XY; uint32_t * Y = &XY[32 * r]; uint32_t * Z = &XY[64 * r]; uint64_t i; uint64_t j; size_t k; /* 1: X <-- B */ for (k = 0; k < 32 * r; k++) X[k] = le32dec(&B[4 * k]); /* 2: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 3: V_i <-- X */ blkcpy(&V[i * (32 * r)], X, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(X, Y, Z, r); /* 3: V_i <-- X */ blkcpy(&V[(i + 1) * (32 * r)], Y, 128 * r); /* 4: X <-- H(X) */ blockmix_salsa8(Y, X, Z, r); } /* 6: for i = 0 to N - 1 do */ for (i = 0; i < N; i += 2) { /* 7: j <-- Integerify(X) mod N */ j = integerify(X, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(X, &V[j * (32 * r)], 128 * r); blockmix_salsa8(X, Y, Z, r); /* 7: j <-- Integerify(X) mod N */ j = integerify(Y, r) & (N - 1); /* 8: X <-- H(X \xor V_j) */ blkxor(Y, &V[j * (32 * r)], 128 * r); blockmix_salsa8(Y, X, Z, r); } /* 10: B' <-- X */ for (k = 0; k < 32 * r; k++) le32enc(&B[4 * k], X[k]); } /** * crypto_scrypt(passwd, passwdlen, salt, saltlen, N, r, p, buf, buflen): * Compute scrypt(passwd[0 .. passwdlen - 1], salt[0 .. saltlen - 1], N, r, * p, buflen) and write the result into buf. The parameters r, p, and buflen * must satisfy r * p < 2^30 and buflen <= (2^32 - 1) * 32. The parameter N * must be a power of 2 greater than 1. * * Return 0 on success; or -1 on error. */ int crypto_scrypt(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t N, uint32_t r, uint32_t p, uint8_t * buf, size_t buflen) { void * B0, * V0, * XY0; uint8_t * B; uint32_t * V; uint32_t * XY; uint32_t i; /* Sanity-check parameters. */ #if SIZE_MAX > UINT32_MAX if (buflen > (((uint64_t)(1) << 32) - 1) * 32) { errno = EFBIG; goto err0; } #endif if ((uint64_t)(r) * (uint64_t)(p) >= (1 << 30)) { errno = EFBIG; goto err0; } if (((N & (N - 1)) != 0) || (N < 2)) { errno = EINVAL; goto err0; } if ((r > SIZE_MAX / 128 / p) || #if SIZE_MAX / 256 <= UINT32_MAX (r > SIZE_MAX / 256) || #endif (N > SIZE_MAX / 128 / r)) { errno = ENOMEM; goto err0; } /* Allocate memory. */ #ifdef HAVE_POSIX_MEMALIGN if ((errno = posix_memalign(&B0, 64, 128 * r * p)) != 0) goto err0; B = (uint8_t *)(B0); if ((errno = posix_memalign(&XY0, 64, 256 * r + 64)) != 0) goto err1; XY = (uint32_t *)(XY0); #ifndef MAP_ANON if ((errno = posix_memalign(&V0, 64, 128 * r * N)) != 0) goto err2; V = (uint32_t *)(V0); #endif #else if ((B0 = malloc(128 * r * p + 63)) == NULL) goto err0; B = (uint8_t *)(((uintptr_t)(B0) + 63) & ~ (uintptr_t)(63)); if ((XY0 = malloc(256 * r + 64 + 63)) == NULL) goto err1; XY = (uint32_t *)(((uintptr_t)(XY0) + 63) & ~ (uintptr_t)(63)); #ifndef MAP_ANON if ((V0 = malloc(128 * r * N + 63)) == NULL) goto err2; V = (uint32_t *)(((uintptr_t)(V0) + 63) & ~ (uintptr_t)(63)); #endif #endif #ifdef MAP_ANON if ((V0 = mmap(NULL, 128 * r * N, PROT_READ | PROT_WRITE, #ifdef MAP_NOCORE MAP_ANON | MAP_PRIVATE | MAP_NOCORE, #else MAP_ANON | MAP_PRIVATE, #endif -1, 0)) == MAP_FAILED) goto err2; V = (uint32_t *)(V0); #endif /* 1: (B_0 ... B_{p-1}) <-- PBKDF2(P, S, 1, p * MFLen) */ PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, 1, B, p * 128 * r); /* 2: for i = 0 to p - 1 do */ for (i = 0; i < p; i++) { /* 3: B_i <-- MF(B_i, N) */ smix(&B[i * 128 * r], r, N, V, XY); } /* 5: DK <-- PBKDF2(P, B, 1, dkLen) */ PBKDF2_SHA256(passwd, passwdlen, B, p * 128 * r, 1, buf, buflen); /* Free memory. */ #ifdef MAP_ANON if (munmap(V0, 128 * r * N)) goto err2; #else free(V0); #endif free(XY0); free(B0); /* Success! */ return (0); err2: free(XY0); err1: free(B0); err0: /* Failure! */ return (-1); }
sha256.h
/*- * Copyright 2005,2007,2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: src/lib/libmd/sha256.h,v 1.2 2006/01/17 15:35:56 phk Exp $ */ #ifndef _SHA256_H_ #define _SHA256_H_ #include <sys/types.h> #include <stdint.h> typedef struct SHA256Context { uint32_t state[8]; uint32_t count[2]; unsigned char buf[64]; } SHA256_CTX; typedef struct HMAC_SHA256Context { SHA256_CTX ictx; SHA256_CTX octx; } HMAC_SHA256_CTX; void SHA256_Init(SHA256_CTX *); void SHA256_Update(SHA256_CTX *, const void *, size_t); void SHA256_Final(unsigned char [32], SHA256_CTX *); void HMAC_SHA256_Init(HMAC_SHA256_CTX *, const void *, size_t); void HMAC_SHA256_Update(HMAC_SHA256_CTX *, const void *, size_t); void HMAC_SHA256_Final(unsigned char [32], HMAC_SHA256_CTX *); /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ void PBKDF2_SHA256(const uint8_t *, size_t, const uint8_t *, size_t, uint64_t, uint8_t *, size_t); #endif /* !_SHA256_H_ */
sha256.cpp
/*- * Copyright 2005,2007,2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "scrypt_platform.h" #include <sys/types.h> #include <stdint.h> #include <string.h> #include "sysendian.h" #include "sha256.h" /* * Encode a length len/4 vector of (uint32_t) into a length len vector of * (unsigned char) in big-endian form. Assumes len is a multiple of 4. */ static void be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len) { size_t i; for (i = 0; i < len / 4; i++) be32enc(dst + i * 4, src[i]); } /* * Decode a big-endian length len vector of (unsigned char) into a length * len/4 vector of (uint32_t). Assumes len is a multiple of 4. */ static void be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len) { size_t i; for (i = 0; i < len / 4; i++) dst[i] = be32dec(src + i * 4); } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define SHR(x, n) (x >> n) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; /* Adjusted round function for rotating state */ #define RNDr(S, W, i, k) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + k) /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ static void SHA256_Transform(uint32_t * state, const unsigned char block[64]) { uint32_t W[64]; uint32_t S[8]; uint32_t t0, t1; int i; /* 1. Prepare message schedule W. */ be32dec_vect(W, block, 64); for (i = 16; i < 64; i++) W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; /* 2. Initialize working variables. */ memcpy(S, state, 32); /* 3. Mix. */ RNDr(S, W, 0, 0x428a2f98); RNDr(S, W, 1, 0x71374491); RNDr(S, W, 2, 0xb5c0fbcf); RNDr(S, W, 3, 0xe9b5dba5); RNDr(S, W, 4, 0x3956c25b); RNDr(S, W, 5, 0x59f111f1); RNDr(S, W, 6, 0x923f82a4); RNDr(S, W, 7, 0xab1c5ed5); RNDr(S, W, 8, 0xd807aa98); RNDr(S, W, 9, 0x12835b01); RNDr(S, W, 10, 0x243185be); RNDr(S, W, 11, 0x550c7dc3); RNDr(S, W, 12, 0x72be5d74); RNDr(S, W, 13, 0x80deb1fe); RNDr(S, W, 14, 0x9bdc06a7); RNDr(S, W, 15, 0xc19bf174); RNDr(S, W, 16, 0xe49b69c1); RNDr(S, W, 17, 0xefbe4786); RNDr(S, W, 18, 0x0fc19dc6); RNDr(S, W, 19, 0x240ca1cc); RNDr(S, W, 20, 0x2de92c6f); RNDr(S, W, 21, 0x4a7484aa); RNDr(S, W, 22, 0x5cb0a9dc); RNDr(S, W, 23, 0x76f988da); RNDr(S, W, 24, 0x983e5152); RNDr(S, W, 25, 0xa831c66d); RNDr(S, W, 26, 0xb00327c8); RNDr(S, W, 27, 0xbf597fc7); RNDr(S, W, 28, 0xc6e00bf3); RNDr(S, W, 29, 0xd5a79147); RNDr(S, W, 30, 0x06ca6351); RNDr(S, W, 31, 0x14292967); RNDr(S, W, 32, 0x27b70a85); RNDr(S, W, 33, 0x2e1b2138); RNDr(S, W, 34, 0x4d2c6dfc); RNDr(S, W, 35, 0x53380d13); RNDr(S, W, 36, 0x650a7354); RNDr(S, W, 37, 0x766a0abb); RNDr(S, W, 38, 0x81c2c92e); RNDr(S, W, 39, 0x92722c85); RNDr(S, W, 40, 0xa2bfe8a1); RNDr(S, W, 41, 0xa81a664b); RNDr(S, W, 42, 0xc24b8b70); RNDr(S, W, 43, 0xc76c51a3); RNDr(S, W, 44, 0xd192e819); RNDr(S, W, 45, 0xd6990624); RNDr(S, W, 46, 0xf40e3585); RNDr(S, W, 47, 0x106aa070); RNDr(S, W, 48, 0x19a4c116); RNDr(S, W, 49, 0x1e376c08); RNDr(S, W, 50, 0x2748774c); RNDr(S, W, 51, 0x34b0bcb5); RNDr(S, W, 52, 0x391c0cb3); RNDr(S, W, 53, 0x4ed8aa4a); RNDr(S, W, 54, 0x5b9cca4f); RNDr(S, W, 55, 0x682e6ff3); RNDr(S, W, 56, 0x748f82ee); RNDr(S, W, 57, 0x78a5636f); RNDr(S, W, 58, 0x84c87814); RNDr(S, W, 59, 0x8cc70208); RNDr(S, W, 60, 0x90befffa); RNDr(S, W, 61, 0xa4506ceb); RNDr(S, W, 62, 0xbef9a3f7); RNDr(S, W, 63, 0xc67178f2); /* 4. Mix local working variables into global state. */ for (i = 0; i < 8; i++) state[i] += S[i]; /* Clean the stack. */ memset(W, 0, 256); memset(S, 0, 32); t0 = t1 = 0; } static unsigned char PAD[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; /* Add padding and terminating bit-count. */ static void SHA256_Pad(SHA256_CTX * ctx) { unsigned char len[8]; uint32_t r, plen; /* * Convert length to a vector of bytes -- we do this now rather * than later because the length will change after we pad. */ be32enc_vect(len, ctx->count, 8); /* Add 1--64 bytes so that the resulting length is 56 mod 64. */ r = (ctx->count[1] >> 3) & 0x3f; plen = (r < 56) ? (56 - r) : (120 - r); SHA256_Update(ctx, PAD, (size_t)plen); /* Add the terminating bit-count. */ SHA256_Update(ctx, len, 8); } /* SHA-256 initialization. Begins a SHA-256 operation. */ void SHA256_Init(SHA256_CTX * ctx) { /* Zero bits processed so far. */ ctx->count[0] = ctx->count[1] = 0; /* Magic initialization constants. */ ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } /* Add bytes into the hash. */ void SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len) { uint32_t bitlen[2]; uint32_t r; const unsigned char *src = (const unsigned char *)in; /* Number of bytes left in the buffer from previous updates. */ r = (ctx->count[1] >> 3) & 0x3f; /* Convert the length into a number of bits. */ bitlen[1] = ((uint32_t)len) << 3; bitlen[0] = (uint32_t)(len >> 29); /* Update number of bits. */ if ((ctx->count[1] += bitlen[1]) < bitlen[1]) ctx->count[0]++; ctx->count[0] += bitlen[0]; /* Handle the case where we don't need to perform any transforms. */ if (len < 64 - r) { memcpy(&ctx->buf[r], src, len); return; } /* Finish the current block. */ memcpy(&ctx->buf[r], src, 64 - r); SHA256_Transform(ctx->state, ctx->buf); src += 64 - r; len -= 64 - r; /* Perform complete blocks. */ while (len >= 64) { SHA256_Transform(ctx->state, src); src += 64; len -= 64; } /* Copy left over data into buffer. */ memcpy(ctx->buf, src, len); } /* * SHA-256 finalization. Pads the input data, exports the hash value, * and clears the context state. */ void SHA256_Final(unsigned char digest[32], SHA256_CTX * ctx) { /* Add padding. */ SHA256_Pad(ctx); /* Write the hash. */ be32enc_vect(digest, ctx->state, 32); /* Clear the context state. */ memset((void *)ctx, 0, sizeof(*ctx)); } /* Initialize an HMAC-SHA256 operation with the given key. */ void HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen) { unsigned char pad[64]; unsigned char khash[32]; const unsigned char * K = (const unsigned char *)_K; size_t i; /* If Klen > 64, the key is really SHA256(K). */ if (Klen > 64) { SHA256_Init(&ctx->ictx); SHA256_Update(&ctx->ictx, K, Klen); SHA256_Final(khash, &ctx->ictx); K = khash; Klen = 32; } /* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */ SHA256_Init(&ctx->ictx); memset(pad, 0x36, 64); for (i = 0; i < Klen; i++) pad[i] ^= K[i]; SHA256_Update(&ctx->ictx, pad, 64); /* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */ SHA256_Init(&ctx->octx); memset(pad, 0x5c, 64); for (i = 0; i < Klen; i++) pad[i] ^= K[i]; SHA256_Update(&ctx->octx, pad, 64); /* Clean the stack. */ memset(khash, 0, 32); } /* Add bytes to the HMAC-SHA256 operation. */ void HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void *in, size_t len) { /* Feed data to the inner SHA256 operation. */ SHA256_Update(&ctx->ictx, in, len); } /* Finish an HMAC-SHA256 operation. */ void HMAC_SHA256_Final(unsigned char digest[32], HMAC_SHA256_CTX * ctx) { unsigned char ihash[32]; /* Finish the inner SHA256 operation. */ SHA256_Final(ihash, &ctx->ictx); /* Feed the inner hash to the outer SHA256 operation. */ SHA256_Update(&ctx->octx, ihash, 32); /* Finish the outer SHA256 operation. */ SHA256_Final(digest, &ctx->octx); /* Clean the stack. */ memset(ihash, 0, 32); } /** * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen): * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1). */ void PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt, size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen) { HMAC_SHA256_CTX PShctx, hctx; size_t i; uint8_t ivec[4]; uint8_t U[32]; uint8_t T[32]; uint64_t j; int k; size_t clen; /* Compute HMAC state after processing P and S. */ HMAC_SHA256_Init(&PShctx, passwd, passwdlen); HMAC_SHA256_Update(&PShctx, salt, saltlen); /* Iterate through the blocks. */ for (i = 0; i * 32 < dkLen; i++) { /* Generate INT(i + 1). */ be32enc(ivec, (uint32_t)(i + 1)); /* Compute U_1 = PRF(P, S || INT(i)). */ memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX)); HMAC_SHA256_Update(&hctx, ivec, 4); HMAC_SHA256_Final(U, &hctx); /* T_i = U_1 ... */ memcpy(T, U, 32); for (j = 2; j <= c; j++) { /* Compute U_j. */ HMAC_SHA256_Init(&hctx, passwd, passwdlen); HMAC_SHA256_Update(&hctx, U, 32); HMAC_SHA256_Final(U, &hctx); /* ... xor U_j ... */ for (k = 0; k < 32; k++) T[k] ^= U[k]; } /* Copy as many bytes as necessary into buf. */ clen = dkLen - i * 32; if (clen > 32) clen = 32; memcpy(&buf[i * 32], T, clen); } /* Clean PShctx, since we never called _Final on it. */ memset(&PShctx, 0, sizeof(HMAC_SHA256_CTX)); }
sysendian.h
/*- * Copyright 2007-2009 Colin Percival * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #ifndef _SYSENDIAN_H_ #define _SYSENDIAN_H_ #include "scrypt_platform.h" /* If we don't have be64enc, the <sys/endian.h> we have isn't usable. */ #if !HAVE_DECL_BE64ENC #undef HAVE_SYS_ENDIAN_H #endif #ifdef HAVE_SYS_ENDIAN_H #include <sys/endian.h> #else #include <stdint.h> //#define inline _inline static inline uint32_t be32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) + ((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24)); } static inline void be32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; p[3] = x & 0xff; p[2] = (x >> 8) & 0xff; p[1] = (x >> 16) & 0xff; p[0] = (x >> 24) & 0xff; } static inline uint64_t be64dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint64_t)(p[7]) + ((uint64_t)(p[6]) << 8) + ((uint64_t)(p[5]) << 16) + ((uint64_t)(p[4]) << 24) + ((uint64_t)(p[3]) << 32) + ((uint64_t)(p[2]) << 40) + ((uint64_t)(p[1]) << 48) + ((uint64_t)(p[0]) << 56)); } static inline void be64enc(void *pp, uint64_t x) { uint8_t * p = (uint8_t *)pp; p[7] = x & 0xff; p[6] = (x >> 8) & 0xff; p[5] = (x >> 16) & 0xff; p[4] = (x >> 24) & 0xff; p[3] = (x >> 32) & 0xff; p[2] = (x >> 40) & 0xff; p[1] = (x >> 48) & 0xff; p[0] = (x >> 56) & 0xff; } static inline uint32_t le32dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint32_t)(p[0]) + ((uint32_t)(p[1]) << 8) + ((uint32_t)(p[2]) << 16) + ((uint32_t)(p[3]) << 24)); } static inline void le32enc(void *pp, uint32_t x) { uint8_t * p = (uint8_t *)pp; p[0] = x & 0xff; p[1] = (x >> 8) & 0xff; p[2] = (x >> 16) & 0xff; p[3] = (x >> 24) & 0xff; } static inline uint64_t le64dec(const void *pp) { const uint8_t *p = (uint8_t const *)pp; return ((uint64_t)(p[0]) + ((uint64_t)(p[1]) << 8) + ((uint64_t)(p[2]) << 16) + ((uint64_t)(p[3]) << 24) + ((uint64_t)(p[4]) << 32) + ((uint64_t)(p[5]) << 40) + ((uint64_t)(p[6]) << 48) + ((uint64_t)(p[7]) << 56)); } static inline void le64enc(void *pp, uint64_t x) { uint8_t * p = (uint8_t *)pp; p[0] = x & 0xff; p[1] = (x >> 8) & 0xff; p[2] = (x >> 16) & 0xff; p[3] = (x >> 24) & 0xff; p[4] = (x >> 32) & 0xff; p[5] = (x >> 40) & 0xff; p[6] = (x >> 48) & 0xff; p[7] = (x >> 56) & 0xff; } #endif /* !HAVE_SYS_ENDIAN_H */ #endif /* !_SYSENDIAN_H_ */
scrypt_platform.h
// // Created by Tony on 2018/8/3. // #ifndef _SCRYPT_PLATFORM_H_ #define _SCRYPT_PLATFORM_H_ #if defined(CONFIG_H_FILE) #include CONFIG_H_FILE #elif defined(HAVE_CONFIG_H) #include "config.h" #else #endif #endif /* !_SCRYPT_PLATFORM_H_ */